七年級數學教學教案人教版最新范本
1、了解推理、證明的格式,理解判定定理的證法。
2、掌握平行線的第二個判定定理,會用判定公理及定理進行簡單的推理論證。
3、通過第二個判定定理的推導,培養學生分析問題、進行推理的`能力。
4、使學生了解知識來源于實踐,又服務于實踐,只有學好文化知識,才有解決實際問題的本領,從而對學生進行學習目的的教育。
二、學法引導
1、教師教法:啟發式引導發現法。
2、學生學法:積極參與、主動發現、發展思維。
三、重點難點及解決辦法
(一)重點
判定定理的推導和例題的解答。
(二)難點
使用符號語言進行推理。
(三)解決辦法
1、通過教師正確引導,學生積極思維,發現定理,解決重點。
2、通過教師指導,學生自行完成推理過程,解決難點及疑點。
四、課時安排
1課時
五、教具學具準備
三角板、投影儀、自制膠片。
六、師生互動活動設計
1、通過設計練習,復習基礎,創造情境,引入新課。
2、通過教師指導,學生探索新知,練習鞏固,完成新授。
3、通過學生自己總結完成小結。
七、教學步驟
(一)明確目標
掌握平行線的第二個定理的推理,并能運用其進行簡單的證明,培養學生的邏輯思維能力。
(二)整體感知
以情境創設,設計懸念,引出課題,以引導學生的思維,發現新知,以變式訓練鞏固新知。
(三)教學過程
創設情境,復習引入
師:上節課我們學習了平行線的判定公理和一種判定方法,根據所學看下面的問題(出示投影)。
學生活動:學生口答第1、2題。
師:你能說出有什么條件,就可以判定兩條直線平行呢?
學生活動:由第l、2題,學生思考分析,只要有同位角相等或內錯角相等,就可以判定兩條直線平行。
教師將第3題圖形畫在黑板上。
學生活動:學生口答理由,同角的補角相等。
師:要求學生寫出符號推理過程,并板書。
【教法說明】
本節課是前一節課的繼續,是在前一節課的基礎上進行學習的,所以通過第1、2兩題復習上節課所學平行線判定的兩個方法,使學生明確,只要有同位角相等或內錯角相等,就可以判定兩條直線平行。第3題是為推導本節到定定理做鋪墊,即如果同旁內角互補,則可以推出同位角相等,也可以推出內錯角相等,為定理的推理論證,分散了難點。
師:第4題是一個實際問題,題目中已知的兩個角是什么位置關系角?
學生活動:同分內角。
師:它們有什么關系。
學生活動:互補。
師:這個問題就是知道同分內角互補了,那么兩條直線是不是平行的呢?這就是這節課我們要研究的問題。
七年級數學教學教案人教版最新范本(篇2)
一、教材分析
1、教材的內容:本節課是人教版七年級下冊第五章第一節的第一課時
2、教材的地位和作用:平面內兩條直線的位置關系是“空間與圖形”所要研究的基本問題,這些內容學生在前兩個學段已經有所接觸,本章在學生已有知識和經驗的基礎上,繼續研究平面內兩條直線的位置關系,首先研究相交的兩條直線,這是后面學習垂直相交的必要基礎也為后面學面直角坐標系奠定基石,因此本節課具有承前啟后的重要作用
3、教學的重點、難點:
重點:鄰補角、對頂角的概念,對頂角的性質和應用。
難點:理解對頂角性質的探索
(確定重難點的依據:本節的學習目的是研究兩條相交直線產生的四個角的關系,因此將鄰補角、對頂角的概念、性質以及應用作為本節的重點。同學們剛剛開始接觸幾何,對推理說理不習慣也不熟悉,所以將理解對頂角相等的性質作為難點。)
4、教學目標:
A:知識與技能目標
(1).理解對頂角和鄰補角的概念,能在圖形中辨認.
(2).掌握對頂角相等的性質和它的推證過程
(3).會用對頂角的性質進行有關的簡單推理和計算.
B:過程與方法目標
(1).通過觀察、操作、探究、猜想、思考、交流、歸納、推理等培養學生的推理能力和有條理的表達能力,培養操作能力、動手能力。
(2).體會具體到抽象再到具體的思想方法.
C:情感、態度與價值目標
(1).感受圖形中和諧美、對稱美.
(2).感受合作交流帶來的成功感,樹立自信心.
(3).感受數學應用的廣泛性,使學生更加熱愛數學
二、學情分析:
在此之前,學生已經學習了圖形的初步認識、對相交線和平行線有了直觀的感性認識,且對互補和互余有了清楚的了解,在此基礎上來學習鄰補角和對頂角,符合學生的認知規律,讓學生對新知識的應用充滿好奇與期待.
三、教法和學法:
教法:
葉圣陶先生倡導:解放學生的手,解放學生的腦,解放學生的時間.根據這一思想及我校初一學生活潑好動的特點,我采取啟發式教學、探究式教學及多媒體輔助教學相結合的方法.
學法:以學生分組實踐、自主探究、合作交流為主要形式的探究式學習方法.
四、教學過程:
1課前準備:課件,剪刀,紙片,相交線模型
2教學過程:設置以下六個環節
環節一:情景屋(創設情景,激發學習動機)
請學生欣賞觀察圖片,圖片中有大橋上的鋼梁和鋼索,窗戶的窗格都給我們以相交線平行線的形象,讓學生感受到相交線平行線在我們生活中有著廣泛的應用,由此產生研究它們了解它們的興趣和欲望,適時的給出本章課題:相交線和平行線
環節二:問題苑(合作交流,解釋發現)
通過一些問題的設置,激發學生探究的欲望,具體操作:
(1):動手嘗試:剪紙片,感知剪刀所形成的角在剪紙過程中的變化
(2):給出問題,由剪刀這個實物抽象出幾何模型——兩條直線相交。
(讓學生充分的感知到數學來源于生活,符合初中學生的認識規律和興趣愛好)
(3):分析研究此模型:
設置以下一系列問題:
A、兩直線相交構成的4個角兩兩相配共能組成幾對?(6對)
B、對各對角進行分析,首先從位置上去分析————結論:可把這六對角分成兩大類,一類為哪些角?——特點?——它們有一條公共邊,它們的另一邊互為反向延長線——引出概念——鄰補角。
另一類是哪些角?———特點?——它們的兩邊互為反向延長線——引出概念——對頂角
C、再從大小上進行分析——量一量——結論:鄰補角互補、對頂角相等。
D、你能闡述它們互補和相等的理由嗎?
(一堂好課,是由一系列的真問題組成的,本環節在老師的引導下,由學生自由的發揮,通過觀察分析,交流討論一步一步的解決本節課的重點和難點,學生通過自己探索獲得的知識才是自己的知識,讓學生在此過程中學會學習,達到教是為了不教的目的)
環節三:快樂房(大膽創設,感悟變換)
(設置見投影,讓學生判斷形成的兩個角是否為鄰補角,這一變換讓學生充滿興趣,此時一定讓學生用鄰補角的特點去檢驗,達到知識的正向遷移,并理解鄰補角和補角的關系)
環節四:實例庫(拓展應用,升華提高)
例子1:是一組不同形式的角,判斷是否為對頂角,此題的目的.是鞏固對頂角的概念,培養學生的識圖能力
例子2:例子2是用對頂角和鄰補角的性質進行簡單的計算,在這里設置了一組變式題,而且變式題目不是教師直接給出,而是啟發學生自己編,讓學生過了一把編導的癮,學生一定非常的開心,這樣可以活躍課堂氣氛,提高學生的思維能力
(一方面鞏固了對頂角的性質;另一方面說明幾何里的計算題,需要用到圖形的幾何性質,因此,要有根有據地計算.例題放手讓學生自己解決,比教師單純地講解效果會更好.盡管學生書寫格式不如課本上的規范,但通過集體講評糾正后,學生印象會更深刻).
最后安排一個腦筋急轉彎:見投影
(讓學生始終對課堂充滿熱情,通過此練習,體會到數學來自于生活又用于生活,提高學習數學的興趣和熱情)
環節五:點金帚(學后反思感悟收獲)
通過本堂課的探究
我經歷了......
我體會到......
我感受到......
(學生暢所欲言,在“以生為本”的民主氛圍中培養學生歸納、概括能力和語言表達能力;同時引導學生反思探究過程,幫助學生肯定自我,欣賞他人,同時把本節課的內容形成知識體系.)
角的名稱
特征
性質
相同點
不同點
對頂角
①兩條直線相交而成的角
②有一個公共頂點
③沒有公共邊
對頂角相等
都是兩直線相交而成的角,都有一個公共頂點,它們都是成對出現。
對頂角沒有公共邊而鄰補角有一條公共邊;兩條直線相交時,一個角的對頂角有一個,而一個角的鄰補角有兩個
鄰補角
①兩條直線相交面成的角
②有一個公共頂點
③有一條公共邊
鄰補角互補
環節六:沉思閣(課后延伸張揚個性)
此為課后作業:
(適當增加利用對頂角相等解決一些說理的題目,既讓學生感受到對頂角相等這個性質在解題中的獨特魅力,又為后續學習打下良好的基礎.)
五、教學設計說明:
設計理念:面向全體學生,實現:
——人人學有價值的數學
——人人都能獲得必需的數學
——不同的人在數學上得到不同的發展
過程設計:學生親身經歷從現實生活的圖形中提出數學問題,并抽象其蘊涵的數學本質(相交直線),最后回歸生活去運用所學知識的全過程。
設計目的:讓學生帶著興趣、帶著問題走進課堂,帶著新的問題、帶著高漲的熱情離開課堂,進行不斷的探究。
七年級數學教學教案人教版最新范本(篇3)
教學目標:1.能夠在實際情境中,抽象概括出所要研究的數學問題,增強學生的數感符號感。
2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經歷探索同底數冪乘法運算性質
過程,進一步體會冪的意義,發展合作交流能力、推理能力和有條理的表達能力。
3.了解同底數冪乘法的運算性質,并能解決一些實際問題,感受數學與現實生活的密切聯系,
增強學生的數學應用意識,訓練他們養成學會分析問題、解決問題的良好習慣。
教學重點:同底數冪乘法的運算性質,并能解決一些實際問題。
教學過程:
一、復習回顧
活動內容:復習七年級上冊數學課本中介紹的有關乘方運算知識:
二、情境引入
活動內容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數學模型,實際在列式計算時遇到了同底數冪相乘的形式,給出問題,啟發學生進行獨立思考,也可采用小組合作交流的形式,結合學生現有的有關冪的意義的知識,進行推導嘗試,力爭獨立得出結論。
三、講授新課
1.利用乘方的意義,提問學生,引出法則:計算103×102.
解:103×102=(10×10×10)×(10×10)(冪的意義)
=10×10×10×10×10(乘法的結合律)=105.
2.引導學生建立冪的運算法則:
將上題中的底數改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整數,則有即am·an=am+n.
3.引導學生剖析法則
(1)等號左邊是什么運算?(2)等號兩邊的底數有什么關系?
(3)等號兩邊的指數有什么關系?(4)公式中的底數a可以表示什么
(5)當三個以上同底數冪相乘時,上述法則是否成立?
要求學生敘述這個法則,并強調冪的底數必須相同,相乘時指數才能相加.
三、應用提高
活動內容:1.完成課本“想一想”:a?a?a等于什么?
2.通過一組判斷,區分“同底數冪的乘法”與“合并同類項”的不同之處。
3.獨立處理例2,從實際情境中學會處理問題的方法。
4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp
四、拓展延伸
活動內容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73
(5)??6??63(6)??5??53???5?.(7)?a?b???a?b?7542
2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
五、課堂小結
活動內容:師生互相交流總結本節課上應該掌握的同底數冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調與補充,學生也可談一談個人的學習感受。
六、布置作業
1.請你根據本節課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。
2.完成課本習題1.4中所有習題。
1.2冪的乘方與積的乘方(一)
七年級數學教學教案人教版最新范本(篇4)
教學設計思路
“問題是思考的開始”,問題的提出是數學教學中重要的一環,使學生明確學習內容的必要性,才有可能調動學生解決問題的主動性,促進學生認識能力的提高與發展.而對于生產和生活中的實際問題,學生看得見,摸得著,有的還親身經歷過,所以,當教師提出這些問題時,他們一定會躍躍欲試,想學以致用,這樣能起到充分調動學習積極性的作用.
教學目標
知識與技能:
1.經歷同底數冪的除法運算性質的獲得過程,掌握同底數冪的運算性質,會用同底數冪的運算性質進行有關計算,提高學生的運算能力.
2.了解零指數冪和負整指數冪的意義,知道零指數冪和負整指數冪規定的合理性.
過程與方法:
經歷探索同底數冪的除法的運算性質的過程,進一步體會冪的意義,發展推理能力,提高語言表達能力.
情感態度價值觀:
感受數學公式的簡潔美、和諧美.
重點難點
重點:準確、熟練地運用法則進行計算.
難點:負指數冪的條件及法則的正確運用.
教學過程
1.創設情境,復習導入
前面我們學習了同底數冪的乘法,請同學們回答如下問題,看哪位同學回答得快而且準確.
(1)敘述同底數冪的乘法性質.
(2)計算:① ② ③
學生活動:學生回答上述問題.
(m,n都是正整數)
教法說明:通過復習引起學生回憶,鞏固同底數冪的乘法性質,同時為本節的學習打下基礎.
2.提出問題,引出新知
我國研制的“銀河”巨型計算機的運算速度是108次/秒,光計算機(主要由光學運算器、光學存儲器和光學控制器組成)的運算速度是108次/秒.光計算機的運算速度是“銀河”計算機運算速度的多少倍?
怎樣計算 呢?
這就是我們這節課要學習的同底數冪的除法運算.
3.導向深入,得出性質
做一做(鼓勵學生根據冪的意義和除法意義,獨立得出結果)
按乘方的意義和除法計算:
(1)
(2)
(3)
(4)
探究:(1)若a≠0,a15÷a5等于什么?
(2)通過上面的計算,對同底數冪的除法運算,你發現了什么規律?
學生思考,回答
師生共同總結:
教師把結論寫在黑板上.
請同學們試著用文字概括這個性質:
【公式分析與說明】提出問題:在運算過程當中,除數能否為0?
學生回答:不能.(并說明理由)
由此得出:同底數冪相除,底數 .教師指出在我們所學知識范圍內,公式中的m、n為正整數,且m>n,最后綜合得出:
一般地,這就是說,同底數冪相除,底數不變,指數相減.
嘗試證明:
4.揭示規律
由此我們規定
規律一:任何不等于0的數的0次冪都等于1.
一般我們規定
規律二:任何不等于0的數的-p(p是正整數)次冪等于這個數的p次冪的倒數.
5.嘗試反饋,理解新知
(補充)例2 自從掃描隧道電子顯微鏡發明后,便誕生了一門新技術一納米技術.納米是長度單位,1 nm (納米)等于 0.000 000 001 m .請用科學記數法表示 0.000 000 001.
分析:絕對值較小的數可以用一個有一位整數的數與 10 的負指數幕的乘積的形式來表示.
學生活動:學生在練習本上完成例l、例2,由2個學生板演完成之后,由學生判斷板演是否正確.
教師活動:統計做題正確的人數,同時給予肯定或鼓勵.
6.反饋練習,鞏固知識
練習一
(1)填空:
① ②
③ ④
(2)計算:
① ②
③ ④
學生活動:第(l)題由學生口答;第(2)題在練習本上完成,然后同桌互閱,教師抽查.
練習二
下面的計算對不對?如果不對,應怎樣改正?
(1) (2)
(3) (4)
學生活動:此練習以學生搶答方式完成,注意訓練學生的表述能力,以提高興趣.
總結、擴展
我們共同總結這節課的學習內容.
學生活動:①同底數冪相除,底數 ,指數 .
②由學生談本書內容體會.
教法說明:強調“不變”、“相減”.學生談體會,不僅是對本節知識的再現,同時也培養了學生的口頭表達能力和概括總結能力.
6.小結
本節主要學習內容:
同底數冪的除法運算性質.
零指數與負整數指數的意義.
用科學記數法表示絕對值較小的數的方法.
冪的運算與指數運算的關系: (m,n都是正整數); (a≠0,m,n都是正整數),即在底數相同的條件下:冪相乘→指數相加,冪相除→指數相減.
注意的地方:
在同底數冪的除法性質及零指數冪與負整數指數冪中,千萬不能忽略底數a≠0的條件.
7.布置作業
P78 A組3、4 B組2、3
8.板書設計
8.3同底數冪的除法
一、同底數冪的法則
二、例題 練習
例1 (補充)例2
七年級數學教學教案人教版最新范本(篇5)
1.教學重點、難點
重點:列代數式。
難點:弄清楚語句中各數量的意義及相互關系。
2.本節知識結構:
本小節是在前面代數式概念引出之后,具體講述如何把實際問題中的數量關系用代數式表示出來。課文先進一步說明代數式的概念,然后通過由易到難的三組例子介紹列代數式的方法。
3.重點、難點分析:
列代數式實質是實現從基本數量關系的語言表述到代數式的一種轉化。列代數式首先要弄清語句中各種數量的意義及其相互關系,然后把各種數量用適當的字母來表示,最后再把數及字母用適當的運算符號連接起來,從而列出代數式。
如:用代數式表示:比 的2倍大2的數。
分析 本題屬于“…比…多(大)…或…比…少(小)”的類型,首先要抓住這幾個關鍵詞。然后從中找出誰是大數,誰是小數,誰是差。比的2倍大2的數換個方式敘述為所求的數比的2倍大2。大和比前邊的量,即所求的數為大數,那么比和大之間量,即 的2倍則為小數,大后邊的量2即為差。所以本小題是已知小數和差求大數。因為大數=小數+差,所以所求的數為:2 +2.
4.列代數式應注意的問題:
(1)要分清語言敘述中關鍵詞語的意義,理清它們之間的數量關系。如要注意題中的“大”,“小”,“增加”,“減少”,“倍”,“倒數”,“幾分之幾”等詞語與代數式中的加,減,乘,除的運算間的關系。
(2)弄清運算順序和括號的使用。一般按“先讀先寫”的原則列代數式。
(3)數字與字母相乘時數字寫在前面,乘號省略不寫,字母與字母相乘時乘號省略不寫。
(4)在代數式中出現除法時,用分數線表示。
5.教法建議:
列代數式是本章教學的一個難點,學生不容易掌握,這樣老師在上課時,首先要讓學生理解代數式的本質,弄清語句中各種數量的意義及其相互關系,然后設計一定數量的練習題,由易到難,螺旋式上升,使學生能夠正確列出代數式。
七年級數學教學教案人教版最新范本(篇6)
教學目的:
(一)知識點目標:
1.了解正數和負數是怎樣產生的。
2.知道什么是正數和負數。
3.理解數0表示的量的意義。
(二)能力訓練目標:
1.體會數學符號與對應的思想,用正、負數表示具有相反意義的量的符號化方法。
2.會用正、負數表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯系實際,激發學生學好數學的熱情。
教學重點:
知道什么是正數和負數,理解數0表示的量的意義。
教學難點:
理解負數,數0表示的量的意義。
教學方法:
師生互動與教師講解相結合。
教具準備:
地圖冊(中國地形圖)。
教學過程:
引入新課:
1.活動:由兩組各派兩名同學進行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快、?
內容:老師說出指令:
向前兩步,向后兩步;
向前一步,向后三步;
向前兩步,向后一步;
向前四步,向后兩步。
如果學生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[師]其實,在我們的生活中,運用這樣的符號的地方很多,這節課,我們就來學習這種帶有特殊符號、表示具有實際意義的數-----正數和負數。
講授新課:
1.自然數的產生、分數的產生。
2.章頭圖。問題見教材。讓學生思考-3~3℃、凈勝球數與排名順序、±0.5、-9的意義。
3、正數、負數的定義:我們把以前學過的0以外的數叫做正數,在這些數的前面帶有“一”時叫做負數。根據需要有時在正數前面也加上“十”(正號)表示正數。
舉例說明:3、2、0.5、等是正數(也可加上“十”)
-3、-2、-0.5、-等是負數。
4、數0既不是正,也不是負數,0是正數和負數的分界。
0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。
5、讓學生舉例說明正、負數在實際中的應用。展示圖片(又見教材P5圖1.1-2-3)讓學生觀察地形圖上的標注和記錄支出、存入信息的本地X銀行的存折,說出你知道的信息。
鞏固提高:練習:課本P5練習
課時小結:這節課我們學習了哪些知識?你能說一說嗎?
課后作業:課本P7習題1.1的第1、2、4、5題。
活動與探究:在一次數學測驗中,X班的平均分為85分,把高于平均分的高出部分記為正數。
(1)美美得95分,應記為多少?
(2)多多被記作一12分,他實際得分是多少?
七年級數學教學教案人教版最新范本(篇7)
【教學目標】
引導學生通過常規分析,得出解題思路,經歷提出問題,自探問題,應用知識的過程,自主總結出解題辦法;
【教學難點】
找出題目中的可有可無的已知條件,說一說為什么可以這樣認為
【教學過程】
問:以前學過的有關路程,時間,和速度之間的關系是怎么樣的?你能寫出它們之間的關系嗎?
出示例題:甲、乙兩地公路全長352千米。汽車原來從甲地到乙地要11小時,建成高速公路后,汽車每小時速度是原來的2.5倍?,F在汽車從甲地到乙地需要多少小時?
分析:要求現在汽車從甲地到乙地需要多少小時,那么先要求出汽車現在的速度,而汽車現在的速度是原來的2.5倍,那么還得先求出汽車原來的速度。根據`甲乙兩地公路全長352千米。汽車原來從甲地到乙要11小時',可以求出汽車原來的速度。
學生寫出解答過程:汽車原來的速度:352÷1=32(千米); 汽車現在的速度:32×2.5=80(千米)
現在的時間:352÷80=4.4(小時)
問:用比例的思路該怎么樣理解這道題目呢?
分析:甲、乙兩地的公路長度一定,汽車的速度和所需的時間成反比例。因為現在的速度是原來的2.5倍,所以原來的時間是現在的
2.5倍。即:11÷2.5=4.4(小時)。
這樣解答使得`甲乙兩地公路全長352千米'成了多余條件,但是又不影響解答問題。
【我們來探索】
一批零件有240個,王師傅單獨做需要6小時,李師傅的工作效率是王師傅的1.5倍,那么如果讓李師傅單獨做這批零件,需要幾小時?
【總結】
在解答應用題時要善于應用不同的思路和技巧,巧解問題
【作業】
丁阿姨打一份稿件需4小時,王阿姨的速度是丁阿姨的,那么如果由王阿姨打這份稿件,需要幾小時?
丁阿姨打一份稿件需要4小時,王阿姨的速度與丁阿姨的速度比是4:5,那么如果由王阿姨打這份稿件,需要幾小時?
七年級數學教學教案人教版最新范本(篇8)
教學目標:
知識能力:理解有理數的概念,掌握有理數的兩種分類方法,能夠按要求對給定的有理數進行分類。
過程與方法:通過本節的學習,培養學生正確的分類討論觀點和分類能力。
情感、態度、價值觀:通過本節課的學習,體驗成功的喜悅,保持學好數學的信心。
教學重點:
掌握有理數的兩種分類方法
教學難點:
給定的數字將被填入它所屬的集合中
教學方法:
問題導向法
學習方法:
自主探究法
教學過程:
一、形勢歸納
小學我們學了整數和分數,上節課我們學了正數和負數。誰能快速提出以下問題?
1、有以下數字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
(1)將以上數字填入以下兩組:正整數集{}和負整數集{}。你填完了嗎?
(2)將以上數字填入以下兩個集合:整數集合{}和分數集合{}。你填完了嗎?
稱整數和分數為有理數。(指點題,板書)
二、自學指導
學生自學課本,根據課本尋找自學的機會
提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。
三、展示歸納
1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;
2、發動學生進行評價、補充、完善,教師根據每個題目的展示情況進行必要的講解和強調;
3、全部展示完畢后,老師對本段知識做系統梳理,關鍵點予以強調。
四、變式練習
逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發動其他學生評價、補充并完善,最后老師根據需要進行重點強調。
五、總結與反思:通過本節課的學習,你有什么收獲?
六、作業:必做題:課本14頁:1、9題
七年級數學教學教案人教版最新范本(篇9)
教學目標
1.知識與能力目標
(1)二元一次方程和一次函數的關系。
(2)二元一次方程組的圖象解法。
(3)通過學生的思考和操作,力圖提示出方程與圖象之間的關系,引入二元一次方程組的圖象解法。同時培養學生初步的數形結合的意識和能力。
2.情感態度價值觀目標
通過學生的自主探索,提示出方程和圖象之間的對應關系,加強新舊知識的聯系,培養學生的創新意識,激發了學生學習數學的興趣,使學生體驗數學活動充滿探索與創造。
教材分析
前面已經分別學習了一次函數和二元一次方程組,這節課研究二元一次方程組(數)和一次函數(形)的關系,是這兩章知識的綜合運用。強化了部分與整體的內在聯系,知識與知識的內在聯系,并為今后解析幾何的學習奠定基礎。
教學重點
1、二元一次方程和一次函數的關系。
2、能根據一次函數的圖象求二元一次方程組的近似解。
教學難點
方程和函數之間的對應關系即數形結合的意識和能力。
教學方法
學生操作自主探索的方法
學生通過自己操作和思考,結合新舊知識的聯系,自主探索出方程與圖象之間的對應關系,以引入二元一次方程組的圖象解法,同時也建立了“數”二元一次方程組和“形”函數的圖象(直線)之間的對應關系,培養了學生數形結合的意識和能力。
教學過程
一.故事引入
迪卡兒的故事蜘蛛給予的啟示
十七世紀法國數學家迪卡兒有一次生病臥床,他看見屋頂上的一只蜘蛛順著絲左右爬行。迪卡兒看到蜘蛛的“表演”猛的機靈一動。他想,可以把蜘蛛看成一個點,它可以上、下、左、右運動,能不能把蜘蛛的位置用一組數確定下來呢?
在蜘蛛爬行的啟示下,迪卡兒創建了直角坐標系,在坐標系下幾何圖形(形)和方程(數)建立聯系。迪卡兒坐標系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。
這節課我們就來研究二元一次方程(數)與一次函數(形)的關系。
二.嘗試探疑
1 、 Y=x+1
你們把我叫一次函數,我也是二元一次方程??!這是怎么回事,你知道嗎?
學生先是疑惑:方程就是方程,函數就是函數,它們能有什么聯系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數與二元一次方程的內在聯系。
2、函數y=x+1上的任意一點的坐標是否滿足方程xy=1?
以方程xy=1的解為坐標的點在不在函數y=x+1的圖象上?方程xy=1與函數y=x+1有何關系?
學生會迫不及待地拿起筆來計算。從函數y=x+1圖象上找幾個點看它們的坐標是否滿足方程xy=1。結果都滿足。然后學生就會自主和同伴交流,問一問同伴函數y=x+1圖象上的點滿足不滿足方程xy=1。結果也都滿足。這樣他們就會搭成共識:函數y=x+1上的任意一點的坐標都滿足方程xy=1。
然后學生會用同樣的方法得出另一個結論:以方程xy=1的解為坐標的點一定在函數y=x+1的圖象上。然后開始思索函數y=x+1和方程xy=1到底有何關系呢?通過交流自動得出結論:以方程xy=1的解為坐標的點組成的圖象與一次函數y=x+1的圖象相同。
3.在同一坐標系下,化出y=x+1與y=4x2的圖象,他們的交點坐標是什么?
方程組y=x+1的解是什么?二者有何關系?
y=4x2
學生根據畫圖象的方法畫出兩函數圖象,畫出交點坐標。用消元法解出方程組的解。學生會大吃一驚:兩者出奇地相近或者干脆就相同。這是怎么回事呢?然后開始探究二者關系。通過交流、討論得出結論:函數y=x+1和y=4x2的交點坐標就是由兩個函數表達式組成的方程組
y=x+1的解。
Y=4x2
教師作最后總結:因為函數和方程有以上關系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。
三.方程與函數關系的應用
解方程組x2y=2
2xy=2
學生會很快的用消元法解出來。
老師發問:誰還有其他的方法?如果有,鼓勵學生大膽提出。并給予口頭表揚。如果沒有人用其他的方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時,學生就會去探索新的思路、方法。
一回憶方程與函數的關系,有了!方程組的解不就是兩個方程變形得到的兩個函數圖象的交點坐標嗎?學生就會迅速動筆用這種方法把方程解出來。作完之后,互相交流。學生總結一下做題步驟:
1.把兩個方程都化成函數表達式的形式。
2.畫出兩個函數的圖象。
3.畫出交點坐標,交點坐標即為方程組的解。
問題又出來了,有的同學的解是x=2有的同學的解是x=2.1 y=2.1
y=1.9有的同學的解是……雖然都和消元法得到的結果相近,但各不相同。
老師提問:你能說一下用圖象法解方程組的不足嗎?
學生爭先恐后的回答:用這種方法求的解是近似值。不準確。學生提出疑問:既然不準確,那學習它有什么用呢?用消元法就足夠了!
教師解釋一下:在現實生活和生產中,我們會遇到特別復雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數圖象,很容易找出交點坐標。教師可以用Z+Z智能教育平臺演示一下。
[點評]用作圖象的方法解方程組,這體現了兩個知識點的內在聯系。學數學知識,探索知識點之間的聯系,可起到化新為舊的作用,達到事半功倍的效果。逐步讓學生學會這種學習新知識的技巧。
四.引申
方程組x+y=2
x+y=5解的情況如何?你能從函數的角度解釋一下嗎?
學生用消元法開始解方程組,結果無解,怎么回事呢?學生會嘗試運用方程組的圖象解法。畫出兩個函數圖象。答案有了!圖象是平行的,沒有交點。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。
[點評]因為有了上面的用作圖象法解方程組,在這里,學生就會自覺地從函數的角度探究方程的問題,初步具有了數形結合的意識和能力。
五.課后小結
本節課我們通過操作和思考,揭示了二元一次方程和函數圖象之間的對應關系,從而引入二元一次方程組的圖象解法,同時也建立了“數”二元一次方程與“形”函數圖象之間的對應關系,培養了學生初步的數形結合的意識和能力。
六.作業
1.用作圖象法解方程組2x+y=4
2x3y=12
2.如圖,直線L、L相交于點A,試求出A點坐標
教學反思
這節課由故事引入,激發了學生極大的學習興趣。然后提出了三個尖銳的問題,讓學生嘗試探索,在探索中既體會到了探索的艱辛,又體會到了成功的喜悅。在應用和引申過程中,盡量讓學生自主的發現問題,自主的解決問題。學生在緊張、愉快中完成了這節課的學習。
七年級數學教學教案人教版最新范本(篇10)
一、素質教育目標
(一)知識教學點
1.使學生理解近似數和有效數字的意義
2.給一個近似數,能說出它精確到哪一痊,它有幾個有效數字
3.使學生了解近似數和有效數字是在實踐中產生的.
(二)能力訓練點
通過說出一個近似數的精確度和有效數字,培養學生把握關鍵字詞,準確理解概念的能力.
(三)德育滲透點
通過近似數的學習,向學生滲透具體問題具體分析的辯證唯物主義思想
(四)美育滲透點
由于實際生活中有時要把結果搞得準確是辦不到的或沒有必要,所以近似數應運而生,近似數和準確數給人以美的享受.
二、學法引導
1.教學方法:從實際問題出發,啟發引導,充分體現學生為主全,注重學生參與意識
2.學生學法,從身邊找出應用近似數,準確數的例子→近似數概念→鞏固練習
三、重點、難點、疑點及解決辦法
1.重點:理解近似數的精確度和有效數字.
2.難點:正確把握一個近似數的精確度及它的有效數字的個數.
3.疑點:用科學記數法表示的近似數的精確度和有效數字的個數.
四、課時安排
1課時
五、教具學具準備
投影儀,自制膠片
六、師生互動活動設計
教者提出生活中應用準確數和近似數的例子,學生討論回答,學生自己找出類似的例子,教者提出精確度和有效數字的概念,教者提出近似數的有關問題,學生討論解決.
七、教學步驟
(一)提出問題,創設情境
師:有10千克蘋果,平均分給3個人,應該怎樣分?
生:平均每人千克
師:給你一架天平,你能準確地稱出每人所得蘋果的千克數嗎?
生:不能
師:哪怎么分
生:取近似值
師:板書課題
【教法說明】通過提出實際問題,使學生認識到研究近似數是必須的,是自然的,從而提高學生近似數的積極性
(二)探索新知,講授新課
師出示投影1
下列實際問題中出現的數,哪些是精確數,哪些是近似數.
(1)初一(1)有55名同學
(2)地球的半徑約為6370千米
(3)中華人民共和國現在有31個省級行政單位
(4)小明的身高接近1.6米
學生活動:回答上述問題后,自己找出生活中應用準確數和近似數的例子.
師:我們在解決實際問題時,有許多時候只能用近似數你知道為什么嗎?
啟發學生得出兩方面原因:1.搞得完全準確有時是辦不到的,2.往往也沒有必要搞得完全準確.
以開始提出的問題為例,揭示近似數的有關概念
板書:
1.精確度
2.有效數字:一般地,一個近似數,四舍五入到哪一位,就說這個數精確到哪一位,這時,從左邊第一個不是0的數字起,到精確的數位止,所有的數字,都叫做這個數的有效數字.
例如:3.3有二個有效數字
3.33有三個有效數字
討論:近似數0.038有幾個有效數字,0.03080呢?
【教法說明】通過討論學生明確近似數的有效數字需注意的兩點:一是從左邊第一個不是零的數起;二是從左邊第一個不是零的數起,到精確的位數止,所有的數字,教者在有效數字概念對應的文字底下畫上波浪線,標上①、②
例1.(出示投影2)
下列由四舍五入吸到近似數,各精確到哪一位,各有哪幾個有效數字?
(1)43.8(2).03086(3)2.4萬
學生口述解題過程,教者板書.
對于近似數2.4萬學生又能認為是精確到十分位,這時可組織學生討論近似數與5.4和近似數5.4萬中的兩個4的數位有什么不同,從而得出正確的答案.
【教法說明】對于疑點問題,通過啟發討論,適時點撥,遠比教者直接告訴正確答案,理解深刻得多.
鞏固練習見課本122頁練習2、3頁
例2(出示投影3)
下列由四舍五入得來的近似數,各精確到哪一位,各有幾個有效數字?
七年級數學教學教案人教版最新范本(篇11)
【教學目標】
知識與技能:了解并掌握數據收集的基本方法。
過程與方法:在調查的過程中,要有認真的態度,積極參與。
情感、態度與價值觀:體會統計調查在解決實際問題中的作用,逐步養成用數據說話的良好習慣。
【教學重難點】
重點:掌握統計調查的基本方法。
難點:能根據實際情況合理地選擇調查方法。
【教學過程】
講授新課
像前面提到的收集數據的活動中,全班同學是我們要考察的對象,我們采用問卷對全體同學作了逐一調查,像這樣對全體對象進行的調查叫做全面調查。
調查、試驗如采用普查可以收集到較全面、準確的數據,但普查的工作量比較大,有時受客觀條件(人力、財力等)的限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調查,即從被考察的全體對象中抽出一部分對象進行考察的調查方式。
在一個統計問題中,我們把所要考察對象的全體叫做總體,其中的每一個考察對象叫做個體,從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數目叫做樣本容量。
例如,在通過試驗考察500只新工藝生產的燈泡的使用壽命時,從中抽取50只進行試驗。這500只燈泡的使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。
為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進行編號,再把編號寫在小紙片上,將小紙片揉成團,放在一個不透明的容器內,充分攪拌后,從中一個個地抽取50個號簽。
上面抽取樣本的過程中,總體中的各個個體都有相等的機會被抽到,像這樣的抽樣方法是一種簡單隨機抽樣。
師:以“你知道父母的生日嗎?”為題在班級進行調查,請設計一張問卷調查表。
學生小組合作、討論,學生代表展示結果。
教師指導、評論。
師:除了問卷調查外,我們還有哪些方法收集到數據呢?
學生小組討論、交流,學生代表回答。
師:收集數據的直接方法有訪問、調查、觀察、測量、試驗等,間接方法有查閱資料、上網查詢等。就以下統計的數據,你認為選擇何種方法去收集比較合適?
(1)你班中的同學是如何安排周末時間的?
(2)我國瀕臨滅絕的植物數量;
(3)某種玉米種子的發芽率;
(4)學校門口十字路口每天7:00~7:10時的車流量。
七年級數學教學教案人教版最新范本(篇12)
學習目標:
1、從實際生活中感受有序數對的意義,并會確定平面內物體的位置。
2、通過有序數對確定位置,讓學生感受二維空間觀,發展符號感及抽象思維能力,讓學生體會具體-抽象-具體的數學學習過程。
3、培養學生的合作交流意識和探索精神,創造性思維意識。體驗數學來源于生活及應用于生活的意識,更好的激發學習興趣。
學習重點:
理解有序數對的概念,用有序數對來表示位置。
學習難點:
理解有序數對是有序的并用它解決實際問題,
學習過程:
一、學前準備
預習疑難
二、探索與思考
1、觀察思考:觀察下圖,什么時候氣溫最低?什么時候氣溫最高?你是如何發現的?
2、想一想:你看過電影嗎?在電影院內,確定一個座位一般需要幾個數據,為什么?
(1)如何找到6排3號這個座位呢?
(2)在電影票上6排3號與3排6號有什么不同?
(3)如果將6排3號簡記作(6,3),那么3排6號如何表示?
(4)(5,6)表示什么含義?(6,5)呢?
3、結論:
①可用排數和列數兩個不同的數來確定位置;
②排數和列數的先后順序對位置有影響。
4、概念:
有序數對:用含有的詞表示一個位置,其中各個數表示不同的含義,我們把這種兩個數a與b組成的數對,叫做有序數對,記作(a,b)。
三、理解與運用
用有序數對來表示位置的情況是很常見的如人們常用經緯度來表示地球上的地點。你有沒有見過用其他的方式來表示位置的?
四、學習體會:
1、本節課你有哪些收獲?你還有哪些疑惑?
2、預習時的疑難解決了嗎?
五、自我檢測
1、小游戲:
怪獸吃豆豆是一種計算機游戲,圖中的標志表示怪獸先后經過的幾個位置。如果用(1,2)表示怪獸按圖中箭頭所指路線經過的第3個位置。那么你能用同樣的方表示出圖中怪獸經過的其他幾個位置嗎?
2、有趣玩一玩:
中國象棋中的馬頗有騎士風度,自古有馬踏八方之說,如圖六(1),按中國象棋中馬的行棋規則,圖中的馬下一步有A、B、C、D、E、F、G、H八種不同選擇,它的走法就象一步從日字形長方形的對角線的一個端點到另一個端點,不能多也不能少。
六、方法歸類
常見的確定平面上的點位置常用的方法
(1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
(2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數來確定目標所在的位置。
七年級數學教學教案人教版最新范本(篇13)
學習目標:
理解多項式乘法法則,會利用法則進行簡單的多項式乘法運算。
學習重點:
多項式乘法法則及其應用。
學習難點:
理解運算法則及其探索過程。
一、課前訓練:
(1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;
(3)3a2b2 ab3 = , (4) = ;
(5)- = ,(6) = 。
二、探索練習:
(1)如圖1大長方形,其面積用四個小長方形面積
表示為: ;
(2)大長方形的長為 ,寬為 ,要
計算其面積就是 ,其中包含的
運算為 。
由上面的問題可發現:( )( )=
多項式乘以多項式法則:多項式與多項式相乘,先用一個多項式的 以另一個多項式的每一項,再把所得的積 。
三.運用法則規范解題。
四.鞏固練習:
3.計算:① ,
4.計算:
五.提高拓展練習:
5.若 求m,n的值.
6.已知 的結果中不含 項和 項,求m,n的值.
7.計算(a+b+c)(c+d+e),你有什么發現?
六.晚間訓練:
(7) 2a2(-a)4 + 2a45a2 (8)
3、(1)觀察:4×6=24
14×16=224
24×26=624
34×36=1224
你發現其中的規律嗎?你能用代數式表示這一規律嗎?
(2)利用(1)中的規律計算124×126。
4、如圖,AB= ,P是線段AB上一點,分別以AP,BP為邊作正方形。
(1)設AP= ,求兩個正方形的面積之和S;
(2)當AP分別 時,比較S的大小。
七年級數學教學教案人教版最新范本(篇14)
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:
探索和掌握平行公理及其推論.
學習難點:
對平行線本質屬性的理解,用幾何語言描述圖形的性質
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內兩條直線的位置關系除相交外,還有哪些呢?
(一)畫平行線
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
(二)平行公理及推論
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
②過點C畫直線a的平行線,能畫 條;
③你畫的直線有什么位置關系? 。
②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:
(一)選擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )
A.0個 B.1個 C.2個 D.3個
(二)填空題:
1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:
(1)L1與L2 沒有公共點,則 L1與L2 ;
(2)L1與L2有且只有一個公共點,則L1與L2 ;
(3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
七年級數學教學教案人教版最新范本(篇15)
7.3.1多邊形
[教學目標]
1.了解多邊形及有關概念,理解正多邊形及其有關概念.
2.區別凸多邊形與凹多邊形.
[教學重點、難點]
1.重點:
(1)了解多邊形及其有關概念,理解正多邊形及其有關概念.
(2)區別凸多邊形和凹多邊形.
2.難點:
多邊形定義的準確理解.
[教學過程]
一、新課講授
投影:圖形見課本P84圖7.3一l.
你能從投影里找出幾個由一些線段圍成的圖形嗎?
上面三圖中讓同學邊看、邊議.
在同學議論的基礎上,老師給以總結,這些線段圍成的圖形有何特性?
(1)它們在同一平面內.
(2)它們是由不在同一條直線上的.幾條線段首尾順次相接組成的.
這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?
提問:三角形的定義.
你能仿照三角形的定義給多邊形定義嗎?
1.在平面內,由一些線段首位順次相接組成的圖形叫做多邊形.
如果一個多邊形由n條線段組成,那么這個多邊形叫做n邊形.(一個多邊形由幾條線段組成,就叫做幾邊形.)
2.多邊形的邊、頂點、內角和外角.
多邊形相鄰兩邊組成的角叫做多邊形的內角,多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.
3.多邊形的對角線
連接多邊形的不相鄰的兩個頂點的線段,叫做多邊形的對角線.
讓學生畫出五邊形的所有對角線.
4.凸多邊形與凹多邊形
看投影:圖形見課本P85.7.3—6.
在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的同一側,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫BD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是凸多邊形.
5.正多邊形
由正方形的特征出發,得出正多邊形的概念.
各個角都相等,各條邊都相等的多邊形叫做正多邊形.
二、課堂練習
課本P86練習1.2.
三、課堂小結
引導學生總結本節課的相關概念.
四、課后作業
課本P90第1題.
備用題:
一、判斷題.
1.由四條線段首尾順次相接組成的圖形叫四邊形.()
2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()
3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個圖形都在這直線的同一側,叫做四邊形.()
4.在同一平面內,四條線段首尾順次連接組成的圖形叫四邊形.()
二、填空題.
1.連接多邊形的線段,叫做多邊形的對角線.
2.多邊形的任何整個多邊形都在這條直線的,這樣的多邊形叫凸多邊形.
3.各個角,各條邊的多邊形,叫正多邊形.
三、解答題.
1.畫出圖(1)中的六邊形ABCDEF的所有對角線.
2.如圖(2),O為四邊形ABCD內一點,連接OA、OB、OC、OD可以得幾個三角形?它與邊數有何關系?
3.如圖(3),O在五邊形ABCDE的AB上,連接OC、OD、OE,可以得到幾個三角形?它與邊數有何關系?
4.如圖(4),過A作六邊形ABCDEF的對角線,可以得到幾個三角形?它與邊數有何關系?
七年級數學教學教案人教版最新范本(篇16)
教學目標
(一)教學知識點
1.經歷探索二次函數與一元二次方程的關系的過程,體會方程與函數之間的聯系.
2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數和沒有實根.
3.理解一元二次方程的根就是二次函數與y=h(h是實數)交點的橫坐標.
(二)能力訓練要求
1.經歷探索二次函數與一元二次方程的關系的過程,培養學生的探索能力和創新精神.
2.通過觀察二次函數圖象與x軸的交點個數,討論一元二次方程的根的情況,進一步培養學生的數形結合思想.
3.通過學生共同觀察和討論,培養大家的合作交流意識.
(三)情感與價值觀要求
1.經歷探索二次函數與一元二次方程的關系的過程,體驗數學活動充滿著探索與創造,感受數學的嚴謹性以及數學結論的確定性.
2.具有初步的創新精神和實踐能力.
教學重點
1.體會方程與函數之間的聯系.
2.理解何時方程有兩個不等的實根,兩個相等的實數和沒有實根.
3.理解一元二次方程的根就是二次函數與y=h(h是實數)交點的橫坐標.
教學難點
1.探索方程與函數之間的聯系的過程.
2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系.
教學方法
討論探索法.
教具準備
投影片二張
第一張:(記作§2.8.1A)
第二張:(記作§2.8.1B)
教學過程
Ⅰ.創設問題情境,引入新課
[師]我們學習了一元一次方程kx+b=0(k≠0)和一次函數y=kx+b(k≠0)后,討論了它們之間的關系.當一次函數中的函數值y=0時,一次函數y=kx+b就轉化成了一元一次方程kx+b=0,且一次函數y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b=0的解.
現在我們學習了一元二次方程ax2+bx+c=0(a≠0)和二次函數y=ax2+bx+c(a≠0),它們之間是否也存在一定的關系呢?本節課我們將探索有關問題。
通過學生的討論,使學生更清楚以下事實:
(1)分解因式與整式的乘法是一種互逆關系;
(2)分解因式的結果要以積的形式表示;
(3)每個因式必須是整式,且每個因式的次數都必須低于原來的多項式的次數;
(4)必須分解到每個多項式不能再分解為止。
活動5:應用新知
例題學習:
P166例1、例2(略)
在教師的引導下,學生應用提公因式法共同完成例題。
讓學生進一步理解提公因式法進行因式分解。
活動6:課堂練習
1.P167練習;
2.看誰連得準
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
學生自主完成練習。
通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
活動7:課堂小結
從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?
學生發言。
通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關系,加深對類比的數學思想的理解。
活動8:課后作業
課本P170習題的第1、4大題。
學生自主完成
通過作業的鞏固對因式分解,特別是提公因式法理解并學會應用。
板書設計(需要一直留在黑板上主板書)
15.4.1提公因式法例題
1.因式分解的定義
2.提公因式法